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Abstract

We present a framework for the computational assessment and comparison of large-eddy simulation methods. We apply
this to large-eddy simulation of homogeneous isotropic decaying turbulence using a Smagorinsky subgrid model and inves-
tigate the combined effect of discretization and model errors at coarse subgrid resolutions. We compare four different central
finite-volume methods. These discretization methods arise from the four possible combinations that can be made with a sec-
ond-order and a fourth-order central scheme for either the convective and the viscous fluxes. By systematically varying the
simulation resolution and the Smagorinsky coefficient, we determine parameter regions for which a desired number of flow
properties is simultaneously predicted with approximately minimal error. We include both physics-based and mathematics-
based error definitions, leading to different error-measures designed to emphasize either errors in large- or in small-scale flow
properties. It is shown that the evaluation of simulations based on a single physics-based error may lead to inaccurate per-
ceptions on quality. We demonstrate however that evaluations based on a range of errors yields robust conclusions on accu-
racy, both for physics-based and mathematics-based errors. Parameter regions where all considered errors are simultaneously
near-optimal are referred to as ‘multi-objective optimal’ parameter regions. The effects of discretization errors are particularly
important at marginal spatial resolution. Such resolutions reflect local simulation conditions that may also be found in parts
of more complex flow simulations. Under these circumstances, the asymptotic error-behavior as expressed by the order of the
spatial discretization is no longer characteristic for the total dynamic consequences of discretization errors. We find that the
level of overall simulation errors for a second-order central discretization of both the convective and viscous fluxes (the ‘2–2’
method), and the fully fourth-order (‘4–4’) method, is equivalent in their respective ‘multi-objective optimal’ regions. Mixed
order methods, i.e. the ‘2–4’ and ‘4–2’ combinations, yield errors which are considerably higher.
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1. Introduction

In recent years, large-eddy simulation (LES) has become established as a research tool for turbulent flows
[1,2]. Currently, an increasing number of LES studies is oriented towards industrial applications, often based
on a finite-volume discretization. However, several fundamental issues remain to be solved in LES in order to
develop strict reliability and quality verifications. The use of finite-volume discretization methods is compli-
cated by the absence of a proper estimation of errors in LES. Specifically at coarse simulation resolutions,
mostly dictated by available computer resources, this poses an obstacle for assuring objective quality guide-
lines for LES. We focus on this issue here.

In the present paper, we will use a new analysis tool for the evaluation of LES error-behavior. This is a
computational method of error-analysis, aimed at quantifying the incurred error in a particular large-eddy
simulation. Such measuring of errors in a simulation is a pre-cursor for the optimization of errors. Four dif-
ferent numerical discretization schemes are evaluated and compared for LES using the Smagorinsky model.
Simulation errors are defined either based on strict mathematical principles, or on physics-based simulation
properties. The latter are usually the only ones which are accessible in practical applications. However, we find
that the perceived LES quality strongly depends on the particular error definition that is used. Specifically,
evaluations of LES using physics-based errors may lead to an overly optimistic assessment, due to partially
compensating sources of error. Despite this, we find that the simultaneous inclusion of a range of physics-
based errors, emphasizing both large- and small-scale flow properties, does allow a robust qualification of
the different discretization schemes which is quite independent of the error definition. In this way, a complete
assessment of the total simulation error in LES associated with a particular finite-volume discretization can be
achieved.

The new evaluation method, which is here illustrated with simulations of homogeneous isotropic turbu-
lence, leads to further insights into error behavior of Smagorinsky LES. In particular, the computational
error-assessment allows to analyze the error-behavior at coarse resolutions. This regime is unattainable to
existing methods of analysis and can display surprising effects of interacting errors. First of all, we consider
the combination of a fourth-order discretization of the convective terms with a second-order discretization
of the viscous terms in the LES equations. This is often used in higher-order extensions of CFD codes. We
find, rather unexpectedly that this leads to worse LES results. Secondly, improving the order of the discreti-
zation scheme in LES does not necessarily mean improving the quality of the solution. In terms of the optimal
achievable error-level of a method, quite equivalent error-levels are observed for second- and fourth-order dis-
cretizations. These results are most pronounced at coarse resolutions and will be further elucidated in the cur-
rent manuscript.

In order to arrive at computationally affordable calculations, LES aims to predict accurate turbulent flow
statistics by simulating flows at spatial and temporal resolutions which are much coarser than those needed for
the direct numerical simulation of the Navier–Stokes equations [3]. Mathematically, this is formalized by fil-
tering the Navier–Stokes equations with a low-pass filter. Consequently, the filtered equations can be numer-
ically approximated on a much coarser grid, with a mesh spacing h which can be chosen on the order of the
selected filter width D. The filtering operation leads to a set of unclosed stress terms in the equations (i.e., the
subgrid-scale stresses) which are modelled with a subgrid-scale model [1,2].

Much of the subgrid modelling in LES is motivated by the proposition that small-scale turbulence in high-
Reynolds number flows displays universal properties [4]. Consequently, it is considered possible to represent
the dynamic effect of these small turbulent scales by means of a relatively simple subgrid-sale model [5]. Sub-
grid-scale modelling has been an important research topic in LES research during the past decennia [1].

The large-eddy approach to turbulent flows requires the discretization of the modelled equations. For com-
plex flow problems it is popular to resort to high-order finite-volume methods. At marginal subgrid-resolu-
tion, defined here as D/h, such numerical treatment seriously complicates the problem. Under these
resolution conditions errors introduced by the numerical discretization are of the same order of magnitude
as the subgrid-scale stresses [6]. Moreover, modelling errors and discretization errors, which are non-linear
terms, may interact in intricate ways, since they are coupled in an implicit way via the resolved field [7–11].
Due to their non-linear nature, these couplings escape available mathematical tools usually used to investigate
numerical-scheme accuracy, leading to the need for the definition of an adequate framework.
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Two discretization related error sources are identified in the literature, i.e., errors due to the finite-differ-
ence/finite-volume approximation of derivatives and aliasing errors, which arise when the non-linear terms
in the Navier–Stokes equations are projected onto the solution space [6,12]. The dynamic influence of aliasing
errors was, however, found to be of minor relative importance, and only relevant for very high-order discret-
ization methods [13,14]. Consequently, most numerical error analyses in LES concentrate on errors introduced
by discretization of the derivatives.

In recent years, several studies were devoted to isolating the effects of discretization errors from those of
errors in the subgrid-scale modelling. As shown, e.g. in Ref. [15], discretization of the derivatives in the
Navier–Stokes equations has the same effect as applying a particular implicit filter to the equations, with filter
width expressed in terms of the grid spacing h. Several studies suggest that the partial inversion of this implicit
filter improves the overall LES results [16,17], or at least provides a clear framework to motivate subgrid-scale
closures [18]. However, in practice, such an inversion primarily operates on the leading order terms of the dis-
cretization, yielding a tensor-diffusivity reconstruction or an approximate deconvolution [19–21]. So, a focus
on the total low-pass filter and its inversion can only partially clarify LES errors.

In an alternative approach, the subgrid model effects related to the filter width D were explicitly separated
from the numerical errors associated with the grid spacing h. To this end, different proposals were made. In
one class of methods D > h is selected and all scales between D and h are removed from the solution by explicit
filtering [6,12]. In another class of methods, D is considered a parameter which is governed by the subgrid-scale
model. Hence, D/h > 1 is obtained by grid refinement, while keeping D in the model constant [7–9,22–24]. No
further explicit filter is used to accommodate D > h. In such an approach, it is possible to define a grid-inde-
pendent LES. Discretization and modelling errors can be measured using this grid-independent LES and a
DNS reference. For the Smagorinsky model, it was observed that D/h� 1 does not improve the overall
LES solution but, instead, leads to solutions whose accuracy is limited by deficiencies in the subgrid model
[7–9]. In this framework, discretization errors and modelling errors were shown to partially cancel for
D = h [7,9].

A more pragmatic view on modelling and discretization errors concentrates on the overall simulation errors
at D = h [9,25,26]. By systematically varying the Smagorinsky parameter Cs, the spatial resolution N and the
Reynolds number in LES of decaying homogeneous isotropic turbulence a better understanding could be
obtained of the consequences of the combined errors in the subgrid modelling and discretization [9]. From this
computational error-assessment the so-called error-landscape could be inferred which, in particular, allows to
identify ‘optimal refinement strategies’ bC sðNÞ. These provide the optimal model parameter, resulting in the
lowest simulation error in a specific flow property at given resolution. Later [25], these optimal refinement
strategies were compared with the grid-dependence of the model coefficient that results from the dynamic
eddy-viscosity model [27]. This showed that the dynamic coefficient over-predicts the optimal refinement strat-
egy. From a methodological perspective, this study illustrated that the error-landscape approach is also
instructional in the interpretation of the quality of other eddy-viscosity subgrid models. Recently [28] an effi-
cient method was proposed to directly determine the optimal refinement strategy. The methodology was fur-
ther extended by evaluating a set of error-measures simultaneously [26], leading to the identification of ‘multi-
objective optimal’ refinement regions. In such parameter regions multiple simulation properties, including
both large- and small-scale quantities, are predicted simultaneously nearly optimal.

In the present study, the error-landscape framework is used for the analysis of different numerical discret-
ization schemes, used to simulate homogeneous decaying turbulence, adopting the Smagorinksy model. We
will concentrate on central finite-volume schemes, discretizing the convective and viscous fluxes either with
a second-order or a fourth-order discretization method. This allows four combinations, e.g. a second-order
discretization of the convective fluxes, combined with a second-order discretization of the viscous fluxes.
We will refer to this as the 2–2 scheme. Likewise, one may define a 4–2, 2–4 and 4–4 scheme.

In order to reduce the total simulation errors, several studies have concentrated on high-order schemes for
the convective terms in LES, e.g. preserving total kinetic energy [29–31]. However, our results indicate that for
Smagorinsky LES, mixed-order discretizations for the convective and viscous fluxes are inferior to equal-order
discretizations. To our knowledge, balancing errors arising from convective and viscous discretizations in LES
have never been reported. This balancing expresses the dynamic interaction between modelling and numerical
errors [14]. We further show that 2–2 and 4–4 simulations provide equivalent error-levels at coarse resolutions.
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This contrasts asymptotic convergence properties that apply only at sufficiently high resolutions. Likewise,
‘static’ error evaluations of numerical-schemes are incapable of gauging these effects and hence are less suit-
able for the selection of LES discretizations [14].

The organization of this paper is as follows. In Section 2, the governing equations and simulation setup are
summarized. In the following Section 3, the framework for the assessment of LES errors is presented. Subse-
quently, in Section 4, large-eddy simulations with four different numerical-schemes, i.e., 2–2, 4–4, 4–2 and 2–4,
are compared based on the error-landscape framework. A detailed interpretation of the error consequences is
made in terms of the predicted spectra of kinetic energy. Finally, in Section 5, conclusions are presented.

2. Governing equations and setup

The spatially filtered Navier–Stokes equations for incompressible flows can be written in dimensionless
form as
o�ui

oxi
¼ 0;

o�ui

ot
þ o�ui�uj

oxj
þ o�p

oxi
� 2

Re
oSij

oxj
� osij

oxj
¼ 0; i ¼ 1; 2; 3

ð1Þ
where �ui is the filtered velocity component in the xi-direction, �p the filtered pressure and Re the Reynolds num-
ber. The LES filter is assumed to have a width D and is denoted by ð�Þ. Moreover, Sij ¼ ½o�ui=oxj þ o�uj=oxi�=2
corresponds to the filtered strain-rate tensor.

The filtering of the Navier–Stokes equations gives rise to the subgrid-scale stress tensor sij. This is an
unclosed term in the equations, that depends on both the filtered and the unfiltered velocity field. It is given by
sij ¼ �ui�uj � uiuj: ð2Þ
In large-eddy simulations, these subgrid-scale stresses are replaced by a model mij, which approximates the
dynamic effect of the subgrid-scales on the resolved scales. Such a closure model is based on operations acting
on the resolved velocity field �ui alone.

One of the earliest and most often employed formulations for mij is the Smagorinsky model [32], which
approximates the deviatoric part of sij as
mij ¼ 2ðCsDÞ2jSjSij; ð3Þ

with Cs the Smagorinsky coefficient, D the LES filter width and jSj ¼ ð2SijSijÞ1=2 the magnitude of the filtered
strain-rate tensor.

To investigate the dynamical effects of errors in the subgrid modelling and the numerical discretization we
carry out computations of decaying homogeneous isotropic turbulence at a number of resolutions and differ-
ent values for the model parameter Cs. We closely follow the ‘error-landscape’ procedure proposed in [9]. In
this paper, we focus on effects due to the spatial discretization and consider a number of different numerical
discretization methods. The Reynolds number in the current study corresponds to an initial Rek = 100 in
terms of the Taylor–Reynolds number Rek. The initial turbulent kinetic energy is 0.5. In the DNS reference,
the energy decays from its initial level to 0.15, corresponding approximately to two eddy turnover times. Dur-
ing this time, the Taylor–Reynolds number decreases to 54. Full details of the DNS reference, including a
comprehensive grid-convergence analysis of the results may be found in Ref. [9].

The initial fields for the large-eddy simulations are obtained by filtering the initial DNS field [9] with a cubi-
cal sharp cut-off filter. The filter cut-off is related to the grid cut-off wavenumber kc = p/h, with h the grid spac-
ing. During the simulations, no additional explicit filtering is performed and for the implementation of the
Smagorinsky model, we further take D = h. All computations are performed in a non-dimensional computa-
tional box with size one. Hence, the grid spacing h corresponds with 1/N, with N3 the total number of mesh
points in the computational domain.

The large-eddy simulation and the reference direct numerical simulation [9] are performed with a compress-
ible Navier–Stokes solver, at a low Mach number M = 0.2. At this Mach number, compressibility effects are
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negligible. Hence, the model (3) does not need to be supplemented with a model for the trace of sij and the
subgrid-scale terms in the energy equation are negligible [33].

We adopt cell-centered finite-volume discretizations combined with a four-stage, second-order accurate
Runge–Kutta time integration [2]. We next present a brief overview of the different spatial discretization
schemes. These have been extensively applied to compressible turbulence in Refs. [7,34,35,9]. We distinguish
between second- and fourth-order accurate methods for the convective and the viscous fluxes. In total, this
yields four possible combinations. The second-order schemes correspond to an often used finite-volume
implementation of the equations using a cell-centered discretization and a trapezoidal rule for the integra-
tion of the fluxes [36,37]. Equivalently, these schemes may be formulated using weighted central differences
[7,15] and we will follow this approach here. The fourth-order schemes which are considered, are logical
high-order extensions of the second-order schemes, such that a consistent family of second- and fourth-
order discretizations for the convective and viscous terms is obtained for analysis in the current study.
We turn to the treatment of the convective terms first and describe the discretization of the viscous fluxes
afterwards.

For the discretization of the convective fluxes the adopted second-order discretization corresponds to
of
ox

����
i;j;k

¼ riþ1;j;k � ri�1;j;k

2h
; ð4Þ

where ri;j;k ¼
1

2
si;j;k þ

1

2

si;jþ1;k þ si;j�1;k

2
; ð5Þ

with si;j;k ¼
1

2
fi;j;k þ

1

2

fi;j;kþ1 þ fi;j;k�1

2
; ð6Þ
where fi,j,k is the convective flux-vector at node (i, j,k). Here, it is understood that the coordinate direction x
corresponds to index i and similarly y, z correspond to j and k. One may recognize a second-order accurate
central finite-difference scheme in (4). This scheme is applied to the intermediate field ri,j,k that is obtained by
interpolation of the flux-vector field fi,j,k in directions perpendicular to the direction with respect to which the
derivative is evaluated. This additional averaging over j and k increases the robustness of the scheme and re-
moves the occurrence of p-modes which may arise from the use of 1D schemes in each direction of space
[7,34,38]. It is worth noting that such fully multidimensional schemes are similar to those deduced from mul-
tidimensional finite-element analysis. The derivatives with respect to y and z may be defined analogously and
will not be specified explicitly here.

The fourth-order convective discretization corresponds to
of
ox

����
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¼ 4

3
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2h
� 1

3
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4h
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where ri;j;k ¼
5

8
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2
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2
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with si;j;k ¼
5

8
fi;j;k þ

1

2

fi;j;kþ1 þ fi;j;k�1

2
� 1

8

fi;j;kþ2 þ fi;j;k�2

2
: ð9Þ
This defines the fourth-order accurate central finite-difference scheme, albeit with additional fourth-order
accurate interpolation applied in directions perpendicular to the direction with respect to which the derivative
is evaluated. As for the second-order scheme, this increases robustness, while the formal fourth-order of the
scheme is preserved [7,34].

For the discretization of the viscous terms and the subgrid-scale model, we use discretization schemes that
are based on two consecutive applications of first derivatives. In fact, the first step is a derivative, which, when
applied on a collocated field fi,j,k, provides derivative results at the staggered locations ðiþ 1

2
; jþ 1

2
; k þ 1

2
Þ. Sec-

ond derivatives are then obtained by another use of such a first derivative but now operating on information
available at locations ðiþ 1

2
; jþ 1

2
; k þ 1

2
Þ and returning the approximate derivatives at the nodes (i, j,k). Alter-

natively, one may view this as the application of an ‘inner’ and an ‘outer’ first derivative. For the second-order
discretization, the formulation of the ‘inner’ derivative is [7,34]
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2
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2
: ð12Þ
This corresponds to a second-order accurate central scheme, combined with two second-order accurate inter-
polations in directions perpendicular to the derivative. Shifting this discrete operator over half a grid spacing
yields the ‘outer’ derivative. In detail:
of
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The sequential application of these ‘inner’ and ‘outer’ schemes yield the total, second-order accurate viscous
flux treatment. Since all boundary conditions are periodic, no specific problems at the boundaries arise.

For the fourth-order accurate discretization of the viscous and subgrid-fluxes a combination of two fourth-
order accurate first derivatives is used. Given collocated field data, the following scheme is used [35,9] to
approximate the first derivative in the staggered locations:
of
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8
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This corresponds to a fourth-order central scheme (16), combined with fourth-order interpolations in perpen-
dicular directions (17) and (18). Completion of the second derivatives follows from application of the corre-
sponding scheme, but now operating on staggered field data and returning an approximate derivative at the
collocated grid locations. The specification of that scheme follows analogously to the description given above
for the second-order treatment.

Based on these discretization schemes, we may now define four different discrete representations of the LES
equations. In fact, these methods correspond to all possible combinations of the discretizations of the convec-
tive and viscous terms introduced in Eqs. (4)–(18). As mentioned above in the introduction, we will use the
acronyms 2–2, 2–4, 4–2, 4–4, for the different combinations. The 2–2 and 4–4 schemes correspond, respec-
tively, to a fully second-order and a fully fourth-order discretization. The 4–2 combination has been used
in past LES studies of the temporal mixing layer [34,7]. Finally, the 2–4 combination is a somewhat exotic
discretization, which is added for sake of completeness. Throughout, the treatment of the fluxes due to the
subgrid-scales is taken identical to that of the viscous fluxes.

3. Near-optimal and multi-objective optimal regions

In this section, we introduce ‘near-optimal’ and ‘multi-objective’ parameter regions, which provide the
basic context within which the overall error-behavior of an LES method will be assessed. First in Section
3.1, the basic elements are presented. Comparison of a collection of large-eddy simulations at different reso-
lutions N and Smagorinsky constants Cs, with reference DNS data allow to construct an ‘error-landscape’ [9].
In this landscape the ‘optimal’ and ‘near-optimal’ (N,Cs) combinations that yield low(est) error-levels at given
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computational effort may be identified. Subsequently, a set of eight different ‘elemental’ error definitions is
introduced in Section 3.2. These elemental definitions will be combined to give rise to ‘multi-objective’ param-
eter regions. The elemental error definitions cover both large-scale and small-scale flow properties, either eval-
uated as a strict mathematical L2-norm, or interpreted as direct physical quantity such as energy or enstrophy.
The error definitions will be used in the sequel to provide (N,Cs) combinations that yield near-optimal error-
levels for a set of flow properties simultaneously [26].

3.1. Elements of error-landscapes

In Ref. [9], LES of homogeneous isotropic decaying turbulence was performed at various resolutions and
Smagorinsky coefficients. Based on these simulation results and a corresponding reference DNS, the overall
simulation error based on the resolved kinetic energy E ¼ h�ui�ui=2i was investigated. Here ÆÆæ denotes a vol-
ume averaging. In order to achieve the required overview of the total error-behavior as function of N and
Cs, the time-integrated relative deviation between LES and DNS predictions was evaluated as basic error-
measure:
dEðN ;CsÞ ¼
R T

0
ðELESðtÞ � EDNSðtÞÞ

2 dtR T
0

E2
DNS
ðtÞdt

" #1=2

: ð19Þ
Here, T denotes the interrogation time window, ELES is the kinetic energy obtained from a large-eddy simu-
lation at given resolution N and model coefficient Cs, while EDNS is the reference solution, obtained by filtering
the DNS field with a sharp cut-off filter with filter width D = h = 1/N. For consistency we use the filtered DNS
solution as point of reference [7,39]. In case only unfiltered data are available (e.g. originating from experi-
ments), one should either verify that the filtering has no appreciable effect on the considered reference prop-
erty, or use an explicit subgrid-scale closure to account for this difference (see e.g. Ref. [40]). We will not
address this issue in the present study, but use filtered DNS data in all error definitions.

A range of flow properties can be adopted to characterize different aspects of the evolution of decaying
homogeneous turbulence. Analogous to (19), one can define an error based on the resolved enstrophy
E ¼ h�xi �xi=2i. Here, �x ¼ r� �u is the filtered vorticity. Based on E one may investigate errors that occur in
smaller length-scales of the flow, compared to errors measured in terms of the kinetic energy E. We will also
investigate simulation errors in terms of the integral length-scale L, defined as
LðtÞ ¼
Z 1

0

f ðr; tÞdr; f ðr; tÞ ¼ h�u1ðxþ re1; tÞ�u1ðx; tÞi=h�u2
1i; ð20Þ
with f(r, t) the two-point correlation function, e1 the unit vector in the x1 direction and ÆÆæ denoting volume
averaging. This may be used to quantify errors in the larger scales.

In Fig. 1a, the error dE(N,Cs) is presented. The errors in the resolved turbulent kinetic energy strongly
depend on the resolution and model coefficient. Based on this figure, an ‘optimal refinement strategy’ can
be identified as the ‘valley’ in this landscape. Such a strategy specifies the coefficients bC sðNÞ for which the error
dEðN ; bC sðNÞÞ is minimal.

The error-landscape related to dEðN ;CsÞ (Fig. 1b) displays error-levels that are considerably higher than
those observed for dE. The resolved enstrophy is determined to a larger extent by small-scale structures in
the flow and hence, more difficult to correctly predict than the resolved kinetic energy. The ‘optimal refinement
strategy’ associated with dE (cf. Fig. 1b) differs from that seen in Fig. 1a. This dependence of the optimal
refinement on the error-definition poses a new challenge to LES error-assessment and optimization, since pref-
erences in error definition are not always objective.

In order to accommodate multiple error-measures into the analysis we first introduce a ‘near-optimal’
region Xd(a) with respect to the error-measure d as [26]
XdðaÞ ¼ ðN ;CsÞ 2 R2 dðN ;CsÞ
dðN ; bC sðNÞÞ

6 1þ a

�����
( )

: ð21Þ



Fig. 1. Error-landscapes of LES employing the Smagorinsky model and the 2–2 discretization. Errors are shown for dE (a) and dE (b). The
different simulations that were conducted are indicated by (d).
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Hence, the ‘near-optimal’ region contains all values of Cs for which the resulting simulation error d (i.e., dL, dE

or dE) is smaller than the minimal error at that resolution N, multiplied by a factor 1 + a for a > 0. This
parameter region corresponds to the ‘valley’ near the lowest lying optimal refinement strategy in an error-land-
scape as shown in Fig. 1. Though the selection of the parameter a is somewhat arbitrary, a value a = 0.2 is
suitable to characterize the main features of these ‘error-valleys’ and their connectivity [26]. We will use this
value for the present study. The shape of the near-optimal region Xd(a) provides an overview of the sensitivity
of the model, with respect to its optimal error-level.

In Fig. 2, an overview is presented of the error-behavior of the 2–2 discretization in terms of the optimal
refinement strategies and ‘near-optimal regions’ for the three error definitions dL, dE and dE . In this figure, the
respective optimal Smagorinsky constants are marked with symbols at the different simulation resolutions
considered. Moreover, the corresponding ‘near-optimal’ regions are displayed shaded in gray and semitrans-
parent. As a result, areas in which different near-optimal regions overlap appear in darker shades of gray.
Consequently, regions where one, two or three of the considered error-measures are ‘near-optimal’ can be
readily distinguished. As can be observed in Fig. 2, for N J 50, a connected region exists where all three
errors are ‘near-optimal’. We will refer to this as a ‘multi-objective optimal’ region. Note, that the overall



Fig. 2. ‘Near optimal’ regions of Smagorinsky LES using the 2–2 discretization and error definitions dL, dE and dE . Different ‘near
optimal’ regions are shaded gray and semitransparent, such that areas with overlapping near optimal regions appear with darker shades of
gray. The curves (—), (––) and (� � �), respectively, mark the boundaries of the dL, dE and dE ‘near optimal’ regions. Symbols (j, d, b)
correspond respectively to the optimal refinement strategies for these error definitions.
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error-level generally decreases with increasing resolution. Hence, the values of dL, dE and dE can vary consid-
erably within the ‘near-optimal region’, basically decreasing as N increases.

In this computational LES model we observe that for N [ 50 no ‘multi-objective optimal’ region exists that
incorporates all three error-measures simultaneously. Though simulations can be optimized with respect to
one flow property, by appropriately balancing the interacting modelling and discretization errors, that partic-
ular error-balancing can be at the cost of the quality of other predictions. Consequently, LES error evaluation
based on a single flow property, may provide a misleading error-assessment, as the ‘optimal parameter setting’
that is obtained may not yield acceptable accuracy for other flow properties. We will show that this is con-
nected to the selected error-measures and depends also strongly on the numerical discretization schemes.

We next provide an interpretation of the error-measures as weighted integrals of the kinetic energy spec-
trum. This will also allow to generalize the error definitions dL, dE and dE and will give an indication of the
robustness of the error-assessment in the sequel.

3.2. Weighted-spectrum error-measures

For homogeneous isotropic turbulence, one can readily establish that [41]
L ¼
Z 1

0

k�1EDNSðk; tÞdk; ð22Þ

E ¼
Z 1

0

EDNSðk; tÞdk; ð23Þ

E ¼
Z 1

0

k2EDNSðk; tÞdk; ð24Þ
where EDNSðk; tÞ denotes the kinetic energy spectrum of the filtered DNS solution, at wavenumber k. Hence,
these flow properties are directly related to integrals over the spectrum, weighted with an appropriate power of
k. Using these expressions, the errors dL, dE and dE can be written in terms of weighted-spectrum integrals as
well. Taking for ð�Þ a sharp cut-off filter with cut-off wavenumber kc, we introduce
DpðN ;CsÞ ¼

R T
0

R kc

0
kpðELESðk; tÞ � EDNSðk; tÞÞdk

n o2

dtR T
0

R kc

0 kpEDNSðk; tÞdk
n o2

dt

264
375

1=2

: ð25Þ
In this definition, the cut-off filter is visible in the upper limit kc of the inner integral. The error-measures based
on (22)–(24) can readily be identified as dL ¼ D�1, dE = D0 and dE ¼ D2. Errors in large-scale properties are
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characterized best by low values of p while small-scale errors are associated with higher values of p. Apart
from p = �1, 0 and 2, we will also include p = 1 in the sequel. Though the error D1 does not directly corre-
spond to a well-known flow property, it is included since it completes the sequence of error-measures for
p = �1, 0, 1, 2.

One may observe that expression (25) does not present a true norm of the weighted energy spectra. Con-
sequently, these error measures may yield relatively small values, not because errors are actually small but
because errors in the LES spectrum at different wavenumbers may partially cancel each other. Error-contri-
butions from k-regions in which the DNS-spectrum is under-predicted may be compensated by an over-pre-
dicted spectrum at other wavenumbers. This can lead to underestimation of the actual error. Therefore, we
will also incorporate the following error-definition [26]:
dpðN ;CsÞ ¼
R T

0

R kc

0 k2pðELESðk; tÞ � EDNSðk; tÞÞ2dk dtR T
0

R kc

0
k2pðEDNSðk; tÞÞ2dk dt

" #1=2

: ð26Þ
This error definition is such that every deviation of the LES spectrum from the DNS-spectrum is added as a
positive contribution to the total error. The errors dp cannot be interpreted in terms of well-known physical
flow properties. Still, these error-measures can likewise be adopted to quantify the total simulation error in
large-scale as well as small-scale flow properties.

In the next section, we will use both error definitions Dp and dp to quantify the error-behavior associated
with the different finite-volume discretizations introduced in Section 2. For these schemes we will determine
the multi-objective optimal refinement strategies. We will also compare the error-levels along such a ‘multi-
objective optimal’ refinement strategy.
4. Evaluation of different numerical-schemes

In this section, we compare the induced error-behavior of the different finite-volume discretizations using
the error-landscape methodology presented in the previous section. We will incorporate both error definitions
Dp and dp to compare an error-measure in terms of well-known physical flow properties to an error-measure
based on a mathematical norm. For sake of comparison, we will focus in particular on a weighted optimal
refinement strategy that includes errors at different p. The error-levels along these trajectories show a consid-
erable dependency on the spatial discretization method that was adopted. The dependence of the trajectories
themselves on the precise error definition, i.e., Dp or dp, is shown to be quite small.

Near-optimal regions based on Dp (p = �1 to 2) are presented in Fig. 3a–d for all discretization schemes
considered. The optimal refinement strategies bC ðpÞs ðNÞ for different p are indicated by symbols. Large differ-
ences appear between the four finite-volume discretizations. The absence of connected ‘multi-objective opti-
mal’ regions for some resolution ranges in Fig. 3a–d again emphasizes that LES evaluations using a limited
number of physics-based error-measures, may lead to inaccurate perceptions of simulation quality. We notice
that the 2–2 method has the most extended ‘multi-objective optimal’ region starting at resolutions N � 40. The
4–4 method has a somewhat smaller multi-objective optimal region, i.e., a connected parameter region in
which all error-measures are within the pre-specified acceptance range, is found only for resolutions
N P 56. The 4–2 method has almost no multi-objective optimal region in the considered resolution range; full
overlap only occurs for N P 80. Finally, the 2–4 method displays a multi-objective optimal region for N P 64.
This region is situated around Cs = 0, indicating that LES using this numerical method (and N P 64) per-
forms best without the use of the Smagorinsky model.

In Fig. 4a–d, multi-objective optimal regions are presented for the different finite-volume schemes, but now
based on the errors dp (p = �1 to 2). In contrast to Fig. 3, connected multi-objective optimal regions exist for
all numerical-schemes over the entire resolution range considered. The extent of the multi-objective parameter
regions is considerably larger than seen in Fig. 3 and quite comparable among the different finite-volume dis-
cretizations. However, one can also observe differences in the location of these multi-objective regions for the
different schemes. The 4–2 multi-objective region requires the highest coefficients Cs to comply with the
imposed accuracy conditions. The parameter region for the 2–4 scheme has the lowest Cs values. Both 2–2
and 4–4 schemes are situated in between.



Fig. 3. ‘Near optimal’ regions based on Dp (p = �1 to 2) for the 2–2 scheme (a), the 4–2 scheme (b), the 2–4 scheme (c) and the 4–4 scheme
(d). Different ‘near optimal’ regions are displayed in gray and semitransparent, such that regions with overlap appear with darker shades of
gray. The curves (—), (––), (–Æ) and (� � �), respectively, mark the boundaries of the D�1 (=dL), D0 (=dE), D1 and D2 (=dE) ‘near optimal’
regions. Symbols (j, d, c, b) correspond, respectively, to the optimal refinement strategies for the different error definitions.
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In order to compare ‘optimal’ refinement strategies of Cs and to evaluate the error-levels along such a selec-
tion of Cs, we introduce multi-objective optimal refinement strategies eCDðNÞ and eCdðNÞ associated with either
{Dp} or {dp}. These refinement strategies eCDðNÞ and eCdðNÞ are the respective optimal strategies associated
with the weighted errors [26]
eDðN ;CsÞ ¼
P

p½DpðN ;CsÞ=DpðN ; bC ðpÞs ðNÞÞ�P
p½1=DpðN ; bC ðpÞs ðNÞÞ�

; ð27Þ

~dðN ;CsÞ ¼
P

p½dpðN ;CsÞ=dpðN ; bC ðpÞs ðNÞÞ�P
p½1=dpðN ; bC ðpÞs ðNÞÞ�

: ð28Þ
In the definition of ~d (and eD), the different errors dp(N,Cs) are compensated with their respective optimal er-
ror-levels dpðN ; bC ðpÞs ðNÞÞ, evaluated at the optimal refinement strategies bC ðpÞs that were introduced in connec-
tion to Fig. 3a–d above. This ensures that error-measures with quite different levels can be combined properly.
For example, errors d2 which are considerably higher than d�1, do not dominate the weighted error ~d because
of this p-dependent scaling. The definitions of eCdðNÞ and eCDðNÞ are such that these curves are situated inside
the multi-objective optimal regions seen in Figs. 3 and 4 where these exist.

A comparison between the multi-objective optimal refinement strategies eCd and eCD is presented in Fig. 5 for
all four finite-volume discretizations. Differences between eCd and eCD due to differences between ~d and eD are
relatively small compared to the influence arising from the selected discretization scheme. Hence, despite the
rather different interpretations associated with the error-measures Dp and dp, the suggested optimal refinement
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Fig. 5. Multi-objective refinement strategies eC s (cf. (27), (28)) as function of the resolution N for the 2–2 scheme , the 4–2 scheme
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Fig. 4. ‘Near optimal’ regions based on dp (p = �1 to 2) for the 2–2 scheme (a), the 4–2 scheme (b), the 2–4 scheme (c) and the 4–4 scheme
(d). Different ‘near optimal’ regions are displayed in gray and semitransparent, such that regions with overlap appear with darker shades of
gray. The curves (—), (––), (–Æ) and (� � �), respectively, mark the limits of the d�1, d0, d1 and d2 ‘near optimal’ regions. Symbols (j, d, c,
b) correspond, respectively, to the optimal refinement strategies for the different error definitions.
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strategies arising from the weighted error-measures are predicted in a robust manner. The optimal refinement
strategies occur in well-distinguished pairs that are characteristic for the finite-volume method that was
adopted. For instance, comparatively large values of Cs are required to diminish numerical effects of under-res-
olution in the 4–2 scheme. The comparable behavior of the 2–2 and 4–4 schemes in Figs. 3 and 4 is now
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displayed by quite comparable levels of eC to achieve optimal error-reduction. Finally, the overall Cs-level asso-
ciated with optimal performance of the 2–4 method is lowest; this computational model appears not to benefit
much from adding an explicit Smagorinsky subgrid term to the LES equations.

The relative positions of the different optimal refinement strategies correlate well with results from a mod-
ified wavenumber analysis [42,15]. In fact, from such an analysis it becomes clear that the convective transfer
of kinetic energy toward the smaller scales is less under-predicted by the fourth-order discretization, compared
to the second-order method. Likewise, the dissipative fluxes are under-predicted more by the second-order
method compared to the fourth-order viscous discretization. Thus, it appears natural that the optimal refine-
ment strategy of the 4–2 method requires largest values of the Smagorinsky constant. Among the methods
considered, the strongest convective energy transfer is coupled to the weakest representation of the dissipa-
tion—this requires largest additional damping by the subgrid model in order to reach optimal accuracy. In
the same vein the relative position of the 2–4 method’s optimal line may be interpreted. This correlation
may be helpful in other situations as well, although one should realize that this argument based on modified
wavenumbers cannot include dynamic accumulation of discretization error effects [14].

We next turn to a comparison between the level of errors along the refinement strategies eCd and eCD. An
overview of the results is presented in Fig. 6. We observe that errors related to dp are considerably higher than
those based on Dp, again illustrating the effect of partial error-cancellations in the latter. Generally, the 2–2
and 4–4 schemes give rise to the lowest optimal errors, followed by the ‘mixed-order’ schemes. The 2–4 scheme
appears quite accurate as well, primarily for the larger-scale flow properties. The 4–2 scheme yields highest
error-levels for most resolutions. Striking qualitative differences may be observed between the ‘convergence
patterns’ associated with Dp and dp. A reasonably monotonous decrease of the error-levels occurs as function
of the resolution N when use is made of {dp}. However, strong fluctuations in the optimal error-levels may
occur as function of N when use is made of {Dp}. In terms of this error-measure, an increase in resolution
not necessarily leads to an increased accuracy of predictions. However, also when {Dp} is adopted, the use
of ‘equal-order’ finite-volume methods (2–2 and 4–4) appears to be advisable over the ‘mixed-order’ methods.
This is a central finding in this paper. It appears sub-optimal to increase the accuracy with which the convec-
tive fluxes are evaluated if not also the viscous terms are treated more accurately as well.

An extension of Lilly’s analysis [43] was recently proposed in [44] which allows a theoretical estimation of
the Smagorinsky coefficient as function of the Reynolds number and the resolution, that is consistent with sub-
grid dissipation requirements. This analysis is based on an idealized analytical representation of the energy
spectrum. The dissipation added by the Smagorinsky model was required to coincide with the theoretical sub-
grid dissipation corresponding to the assumed spectrum and filter width. This yields a Smagorinsky coefficient
C�s ðD;ReÞ, which depends on the filter width D and the Reynolds number, i.e.
C�s ðD;ReÞ ¼ Cs;1

c
U�3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cg

Cs;1D

� �4=3

U

s
: ð29Þ
In this formula, the function U(D,Re) is of order unity and depends on the energy spectrum, Cs,1 is Lilly’s
Smagorinsky constant, c is a filter-shape correction and g the Kolmogorov scale. More details can be found
in Ref. [44]. In Fig. 7, we compare the predicted C�s ðNÞ by this formula (using N = 1/D) to eCD and eCd .

The theoretical trajectory C�s ðNÞ coincides very well with the ‘multi-objective optimal strategies’ for the 2–2
scheme. If we accept this correlation to also hold approximately at other flow conditions, then the theoretically
predicted C�s could provide a near-optimal refinement strategy for much higher Reynolds numbers as well. We
observe in Fig. 7 that an increase in Re implies a higher value for C�s in order to obtain optimal accuracy at
given resolution. As Re!1 the dependence on resolution N appears to diminish and an optimal value of
Cs = 0.142 [44] is found. Future research will be directed to test this correspondence between C�s and eCD,eCd at other flow conditions as well.

As a final assessment of the differences in error-behavior between the four discretization methods, we con-
sider the three-dimensional energy spectra at Smagorinsky constants chosen along the dp-multi-objective opti-
mal strategies for resolutions N = 24,32, . . ., 96. Results are shown in Fig. 8a–d for spectra at t = 0.8, i.e.,
toward the end of the simulation in which case the effects due to the numerical method have had considerable
time to develop. The prediction of the spectra was not ‘optimized’ directly as it was not explicitly included in
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Fig. 6. Comparisons of relative errors Dp (left) and dp (right) for p = �1 (a), p = 0 (b), p = 1 (c) and p = 2 (d), along the multi-objective optimal
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the error-measures, but only through its ‘moments’. We notice that all spectra do capture the general shape
seen in the DNS result, including a segment with approximately �5/3 scaling. The 2–2 and 4–4 discretization
methods and to a slightly lesser degree the 4–2 scheme, display quite low levels of error, while the 2–4 scheme
presents a less clear convergence to the DNS spectrum, with increasing resolution.

In this figure, we notice characteristic differences between a second- and a fourth-order discretization of the
convective terms (i.e., Fig. 8a, c (left) versus b, d (right)). The fourth-order (convective) schemes (4–4 and 4–2)
clearly predict more energy in the tail of the spectra than the second-order schemes (2–2 and 2–4). In terms of
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the modified wavenumber associated with second and fourth-order methods [42,15], this can be attributed to a
relatively higher energy transfer to the small-scales for the fourth-order schemes. In the second-order methods,
the discretization error partially inhibits the energy-cascade process. This corresponds well with findings
reported in [14].

5. Conclusions

An assessment of LES errors has been made for a variety of central finite-volume discretizations. This was
based on the evaluation of multiple flow properties simultaneously [26]. The Smagorinsky eddy-viscosity
model was adopted in simulations of homogeneous decaying turbulence. It was shown that values for the
Smagorinsky coefficient exist as function of the simulation resolution N such that all considered flow quanti-
ties are predicted nearly optimally if N is sufficiently large. A strong dependence of the near-optimal Smago-
rinsky coefficients on the adopted finite-volume scheme was established.

Both mathematics-based L2-norms ({dp}) and physics-based ({Dp}) error definitions were considered. It
was shown that physics-based errors may lead to inaccurate perceptions on LES quality when only a single
flow property is considered. However, in many practical applications, only physics-based flow properties
are available. A pragmatic solution to this dilemma was proposed. We demonstrated that, if a range of small-
and large-scale errors is included simultaneously in the analysis, robust conclusions can be formulated regard-
ing the error-behavior of a particular finite-volume discretization. The multi-objective optimal refinement
strategies eCdðNÞ and eCDðNÞ appear in closely matched pairs. The location of these refinement strategies is
strongly dependent on the discretization method. The relative locations of these strategies may be interpreted
in terms of modified wavenumbers associated with the second or fourth-order discretizations of the convective
and viscous fluxes.

The error dynamics of Smagorinsky LES has been investigated at D = h for different numerical implemen-
tations. Second- and fourth-order central finite-volume discretizations were considered for the convective and
viscous terms, leading to four possible combinations (i.e., the 2–2, 2–4, 4–2 and 4–4 schemes). A comparison of
multi-objective optimal refinement strategies eC sðNÞ indicates that the 4–2 scheme requires the highest Smago-
rinsky constants in order to yield acceptable simulation results. The eC sðNÞ levels for the 2–2 and 4–4 schemes
are considerably lower. Further, the 2–4 scheme has the lowest eC sðNÞ: for N > 64 this discretization scheme
yields best results even without the use of a Smagorinsky model.

We observed that the 2–2 generally displayed the smallest errors at coarser subgrid resolutions, closely fol-
lowed by the 4–4 scheme. The ‘mixed-order’ combinations yield higher total errors. This illustrates that, at
coarse resolutions, the asymptotic error behavior as expressed by the order of the spatial discretization is
not a suitable indicator for the total error in large-eddy simulations. The use of ‘equal-order’ finite-volume
methods (2–2 and 4–4) appears to be advisable over the ‘mixed-order’ methods.

We evaluated a theoretical relation C�s ðNÞ [44] which expresses the Smagorinsky coefficient as function of
the filter width and the Reynolds number. The 2–2 multi-objective refinement trajectory eC sðNÞ was found to
be well approximated by C�s . This correspondence requires further research in different test cases. Based on this
theoretical relation we predicted for infinite Reynolds numbers a constant multi-objective refinement strategy
for the 2–2 scheme, situated at Cs � 0.142.

In the current work, we presented a methodology for the evaluation of errors in large-eddy simulations. Its
strengths were demonstrated by comparing in detail the quality of various finite-volume discretization meth-
ods for LES employing a Smagorinsky model. Obviously, some of the conclusions in the current work are
specific to the employed subgrid-scale closure and the class of discretization methods. Nevertheless, the
observed trends clearly illustrate the intricate error behavior which may be encountered in LES and the need
for a strict framework for error evaluation and comparison of LES methods. We believe that such a frame-
work will be a valid tool for evaluations of subgrid-scale models and discretization schemes.

We focussed on simulations of homogeneous isotropic turbulence. Flows of more realistic complexities,
including, e.g. channel flows, mixing layers and jets, require a more involved analysis. A foretaste on the intri-
cate error-behavior which can arise, may be obtained from Ref. [45], discussing the error evaluation of unre-
solved channel flow DNS. Extensions towards modelled LES, both for a mixing layer and for channel flows
are topics of ongoing research.
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